翻訳と辞書 |
Mahler's inequality : ウィキペディア英語版 | Mahler's inequality In mathematics, Mahler's inequality, named after Kurt Mahler, states that the geometric mean of the term-by-term sum of two finite sequences of positive numbers is greater than or equal to the sum of their two separate geometric means: : when ''x''''k'', ''y''''k'' > 0 for all ''k''. == Proof == By the inequality of arithmetic and geometric means, we have: : and : Hence, : Clearing denominators then gives the desired result.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Mahler's inequality」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|